Non-linear dimensionality reduction of signaling networks
نویسندگان
چکیده
منابع مشابه
Non-Linear Dimensionality Reduction
A method for creating a non–linear encoder–decoder for multidimensional data with compact representations is presented. The commonly used technique of autoassociation is extended to allow non–linear representations, and an objective function which penalizes activations of individual hidden units is shown to result in minimum dimensional encodings with respect to allowable error in reconstruction.
متن کاملNon-Linear Dimensionality Reduction With Isomaps
This paper discusses the Isomap method for dimensionality reduction and studies its performance on both artificial and natural datasets. While linear methods for dimensionality reduction such as Principle Component Analysis (PCA) detect a linear subspace of the original domain that represents the data with maximal accuracy, the Isomap method detects the tangent space of a manifold embedded in t...
متن کاملNon-linear Dimensionality Reduction by Locally Linear Isomaps
Algorithms for nonlinear dimensionality reduction (NLDR) find meaningful hidden low-dimensional structures in a high-dimensional space. Current algorithms for NLDR are Isomaps, Local Linear Embedding and Laplacian Eigenmaps. Isomaps are able to reliably recover lowdimensional nonlinear structures in high-dimensional data sets, but suffer from the problem of short-circuiting, which occurs when t...
متن کاملLinear Discriminant Dimensionality Reduction
Fisher criterion has achieved great success in dimensionality reduction. Two representative methods based on Fisher criterion are Fisher Score and Linear Discriminant Analysis (LDA). The former is developed for feature selection while the latter is designed for subspace learning. In the past decade, these two approaches are often studied independently. In this paper, based on the observation th...
متن کاملLinear Dependent Dimensionality Reduction
We formulate linear dimensionality reduction as a semi-parametric estimation problem, enabling us to study its asymptotic behavior. We generalize the problem beyond additive Gaussian noise to (unknown) nonGaussian additive noise, and to unbiased non-additive models.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Systems Biology
سال: 2007
ISSN: 1752-0509
DOI: 10.1186/1752-0509-1-27